Metallographic preparation of fasteners

Pins and rods as means of mechanically connecting parts are one of the oldest construction elements. Rivets and screws were first made from precious metals and later from non-ferrous metals and steels through forging and mechanical cutting. Not until the development of metals that were ductile enough to withstand the pressure of pressing and rolling tools, was cold forming adopted as a process used for the mass production of fasteners.

Both, rivets and screws have their specific fields of applications, such as aircraft and automotive industry, that are determined by specifications, safety and economical considerations.

In many engineering applications, fasteners play a crucial role with regard to structural safety, and therefore have to be manufactured in compliance with specific standards. As a consequence, process and quality control procedures in general and metallographic examination in particular, are important in the production process. The tests range from checking dimensions, mechanical properties, and physical variables, to structure examination and quantitative analysis.

Metallographic examination is part of the quality control regimen for producing fasteners, may it be spot checks of raw material, control and verification of forming and heat treatment processes or failure analysis.

Difficulties during metallographic preparation:

Cutting: the size and shape of fasteners does not always allow for secure clamping and proper cross sectional cutting.

Mounting: shrinkage gaps on the thread and head of a fastener can make it difficult to achieve good edge retention and clean the sample properly in order to observe it microscopically.

Solution:

Cutting: Special holder for fasteners, precision cutting for small screws, or mounting of complete fastener with subsequent coarse grinding to the center.

Mounting: Proper degreasing and cleaning, use of mounting media material with the least shrinkage for hot compression or cold mounting.

The main categories of mechanical joining are threaded fasteners such as bolts, nuts and screws, and non-threaded fasteners, like rivets and pins. Depending on the requirements regarding strength, torsion, environmental conditions etc. threaded and non-threaded fasteners are used for different applications.
Production and application of fasteners

In the historical development of fastener production mechanical machining was important, especially for cutting threads. Today, chipless shaping (rolling) is a universal and economical production method, and machining is only used after the initial shaping, for finishing very special, high quality construction screws which require specific shapes, tolerances and surfaces.

Forming is carried out through either cold or hot pressing. Cold forming technology and metallurgy have advanced to a state where cold pressing has almost replaced hot forming in the production of fasteners.

For very large or complex shaped bolts, hot forming is still an option. Large section sizes, necessitate high cold forming forces resulting in an increased severity of the effects of cold work. For cold forming a continuous wire is fed into an extrusion press, where through compression and reduction of the wire diameter in a die the fastener is shaped (Fig. 1). The threads are formed through a cold rolling operation (Fig. 2). As the threads are the most crucial part on a screw, correct rolling operation and subsequent heat treatment are very important. The cold working processes increase the hardness, and for quality steel fasteners, various heat treatment steps are carried out to achieve certain material properties for specific applications. Low carbon steels are carburized so that the centre is soft and ductile and the surface hard. Carbon steels are hardened and tempered, and depending on the application, temperature variations for austenitization and tempering are used to achieve different mechanical properties from the same raw material. Additional surface hardening, for instance on the heads, can be achieved through induction hardening. During the various stages of shaping and heat treating other steps such as pickling, cleaning and oiling take place.

Coating for corrosion protection is a last and usually a separate step from the actual manufacturing. For improved corrosion protection, fasteners are coated with manganese, zinc or iron phosphate and then oiled.

Proper quality control of raw material is therefore as important various shapes while still "cold".

Difficulties in the preparation of fasteners

The challenge of metallographic preparation of fasteners is their geometry. Usually the cut has to go through the centre of the screw and as the head is a protruding part, it can be difficult to clamp a rivet or screw securely to make a cross sectional cut. Large bolts can usually be cut in half without difficulties, however the thinner the screw is, the more difficult it is to cut. The problem with geometry also influences the mounting, as the curves of thread and head are spots where shrinkage of mounting resin can occur preferentially. This is particular crucial on coated material, because coatings can not be examined properly without good edge retention.

Recommendations for the preparation of fasteners

To overcome the problems of cutting and mounting the following can be recommended:

For medium sized or thin screws a special holder with threads can be made that holds the part securely during cross sectioning (Fig. 3). For smaller screws or rivets the head can be cut off on one side, so that the screw can be laid flat into the mounting press. After mounting, the rest of the screw can be ground to the centre. An alternative is a special lower ram for the mounting press that has a recess on both sides into which the screwheads fit (Fig. 4).

For very small screws cutting is not efficient. They should be mounted with a piece of metal or plastic as a shim to level the screw and then be ground to the middle after mounting (Fig. 5).

Fig. 1: Cold Heading. A basic operation, it forms round wire stock into the essential various shapes while still "cold". A continuous, automatic operation it nonetheless must retain continuity of grain to assure the full integrity of the fastener.

Fig. 2: Thread rolling. A blank is rolled between two flat dies with precise parallel grooves of the thread type required. A cold- or warm- forming operation, rolled threads are strong and smooth - and no material is wasted.

Fig. 3: Special holder for cutting screws
The most efficient way of grinding fasteners is with a grinding stone on an automatic grinding machine, especially if large volumes have to be handled. Dependent of material properties, for hot compression mounting or resins containing harder filler material (DuroFast) phenolic resin with carbon filler (PolyFast) or melamine wite mineral and glass filler (LevoFast) are recommended. For cold mounting epoxy resins (Epofix) epoxies are recommended as they have the least shrinkage. Before mounting, the parts should be thoroughly cleaned, with a degreasing agent such as acetone or ethanol. Particular attention should be paid to the threads and the radius below the head to make sure that the resin will adhere properly to the sample material.

Grinding and polishing

Once the fasteners are properly cut and mounted, the grinding and polishing has to be carried out according to the specific material. The wide range of fastener materials can not all be covered in this Application Note. We have selected two types of metal fasteners of which the preparation methods are given in tables 1 and 2. (For more detailed information on preparations, please refer to the Struers e-Metalog or Struers Application Notes). The examples for preparation data given in this Application Note are for brass shrews (Table 1) and screws of low alloyed steel (Table 2). The coarse grinding to the middle of the screws was carried out on the Struers automatic grinding machine Abraplan, the subsequent automatic fine grinding and polishing on Struers Tegramin.

As mentioned above, during the production of fasteners mechanical defects such as burns, cracks (Fig. 7a), folds and overlaps can occur, some of which can be detected through visual inspection or with non-destructive methods such as dye penetrant and magnetic particle inspection. The depth of these defects can be detected by metallographic means (Fig. 7b). Microstructural defects are mostly due to heat treatment such as overheating (Fig. 8), grain growth, intergranular oxidation and decarburisation (Fig. 9).

In many applications, the fracture of threaded fasteners can have serious consequences, consequently metallographic structural analysis is essential to find out what caused the fracture. They can occur through certain influences over time, such as mechanical, like bending and straining, or thermal and environmental exposure to lubricants, steam, chemical reagents etc. This can lead to fractures due to fatigue (Fig.6), torsion, embrittlement, corrosion and other multiple causes.

Summary

The term “fasteners” includes a wide range of threaded and non-threaded bolts, screws, rivets and pins which all require specific raw material.

Preparation Method

Grinding

<table>
<thead>
<tr>
<th>Step</th>
<th>PG</th>
<th>FG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>Foil/Paper</td>
<td>MD-Largo</td>
</tr>
<tr>
<td>Abrasive Type</td>
<td>SiC</td>
<td>Diamond</td>
</tr>
<tr>
<td>Size</td>
<td>#320</td>
<td>9 μm</td>
</tr>
<tr>
<td>Suspension/Lubricant</td>
<td>Water</td>
<td>DiaPro Allegro/Largo 9</td>
</tr>
<tr>
<td>rpm</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Force [N]/specimen</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Time (min)</td>
<td>As needed</td>
<td>3</td>
</tr>
</tbody>
</table>

Polishing

<table>
<thead>
<tr>
<th>Step</th>
<th>DP</th>
<th>OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>MD-Mol</td>
<td>MD-Chem</td>
</tr>
<tr>
<td>Abrasive Type</td>
<td>Diamond</td>
<td>Colloidal Silica</td>
</tr>
<tr>
<td>Size</td>
<td>3 μm</td>
<td>0.04 μm</td>
</tr>
<tr>
<td>Suspension/Lubricant</td>
<td>DiaPro Mol R 3</td>
<td>OP-S NonDry**</td>
</tr>
<tr>
<td>rpm</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Force [N]/specimen</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Time (min)</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

* Value for 6 mounted samples, 30 mm diam. Clamped in a holder.
**96 ml OP-S NonDry
2 ml ammonia (25%)
2 ml hydrogen peroxide (33%)
and production processes. Good metallographic quality control for raw material and production is essential to ensure quality fasteners. The metallographic checks are mainly for mechanical and thermal damages due to production and subsequent heat treatment. Interpretation of structure and defects requires some experience as the range of materials and shapes of fasteners is very wide.

Specific problems during the metallographic preparation are cutting and mounting, which can be overcome by using various helpful tools. The grinding and polishing procedure depends on the fastener material to be prepared and can be carried out on automatic equipment with a three or four step method.

Application
Notes
Metallographic preparation of fasteners
Elisabeth Weidmann, Struers A/S, Denmark
John McElwain, Struers Inc., Westlake OH, USA

Acknowledgement
We wish to thank Frauke Hogue, Hogue Metallography, for contributing information on microstructures of fasteners and permission to reproduce figs no. 7a+b and 8.

Figs. 1 and 2: Copyright 1975 Alcoa Global Fasteners, Pacific Palisades, CA, USA, for contributing information and permission to reproduction in whole or in part without written permission of the copyright owner. Reproduction is strictly prohibited.

Bibliography
Handbuch der hochfrequenten Schrauben

Schrauben Vademecum, K. H. Ilgner, D. Blume, Bauer und Schaeuere, Neuss, 1978

Characterization of defects in precision fasteners by metallographic methods.
Frauke Hogue, Structure 30, 1996

Table 2
* Value for 6 mounted samples, 30 min in diam. clamped on holder.